

Apple's Sandbox Guide
v1.0
13-09-2011

© 2011, fG! - reverser@put.as

Apple's Sandbox Guide v1.0

 2

Table	 of	 Contents	

1	 –	 Introduction	 ...	 3	

2	 –	 What	 are	 we	 talking	 about?	 ..	 3	

3	 –	 How	 can	 it	 be	 used	 or	 implemented?	 ..	 4	

4	 -‐	 Anatomy	 of	 a	 custom	 profile	 ...	 5	

5	 -‐	 Commands	 Reference	 ..	 6	

5.1	 –	 Actions	 ..	 6	
5.2	 –	 Operations	 ..	 6	
5.3	 –	 Filters	 ..	 31	
5.4	 –	 Modifiers	 ..	 35	
5.5	 -‐	 Other	 keywords	 ...	 36	

6	 –	 Special	 hardcoded	 cases	 ...	 37	

7	 –	 A	 sample	 sandbox	 profile	 ..	 37	

8	 –	 Where	 to	 find	 more	 information	 ...	 43	

Appendix	 A	 ..	 43	

Appendix	 B	 ...	 44	

	

	

Apple's Sandbox Guide v1.0

 3

1	 –	 Introduction	

Apple’s sandbox technology was introduced in Leopard version of Mac OS X. It was called Seatbelt

and was based on TrustedBSD MAC framework.

A few years have passed and documentation is still scarce. Dionysus Blazakis published a great

paper1 and presentation at Blackhat DC 2011, reversing the userland and kernel implementations

of this feature. The other available public references are Apple’s own sandbox profiles (located at

/usr/share/sandbox) and some attempts by other users to create new profiles2. While searching

for some things I found additional documentation. These references are available at chapter 8. I

notably forgot about The Mac Hacker’s Handbook!

This document tries to close this gap by trying to document the operations and options available in

this technology. It is a work in progress and based on Snow Leopard v10.6.8. Apple still considers

this technology as private and subject to changes.

I have tried to provide examples for all operations so it is easier to understand their impact and

mode of operation.

There is a very real possibility of mistakes and wrong assumptions so all contributions and fixes

are more than welcome! You can contact me at reverser@put.as or tweet @osxreverser.

The latest version is always available at http://reverse.put.as.

Enjoy,

fG!

2	 –	 What	 are	 we	 talking	 about?	

Using the definition from Apple’s website:

“Sandboxing protects the system by l imit ing the kinds of operations an application

can perform, such as opening documents or accessing the network. Sandboxing

makes it more diff icult for a security threat to take advantage of an issue in a

specif ic application to affect the greater system.”

The implementation found in Mac OS X can limit the following type of operations:

• File: read, write, with many different granular operations

• IPC: Posix and SysV

• Mach

• Network: inbound, outbound

• Process: execution, fork

• Signals

• Sysctl

• System

It has a rich set of operations that can help to improve the security of applications and mitigate

potential attacks, especially on network-enabled applications such as web browsers, Flash or

applications that process potentially untrusted input such as pdf, word/excel/powerpoint

1 https://media.blackhat.com/bh-dc-11/Blazakis/BlackHat_DC_2011_Blazakis_Apple_Sandbox-wp.pdf
2 https://github.com/s7ephen/OSX-Sandbox--Seatbelt--Profiles

Apple's Sandbox Guide v1.0

 4

documents, etc. Malware analysis and reverse engineering processes can also benefit from this

technology.

3	 –	 How	 can	 it	 be	 used	 or	 implemented?	

There are two alternatives to use this feature (one is just a frontend for the other).

The first is to execute an application within a sandbox, using the command “sandbox-exec”. This is

the best alternative for applying a sandbox to software you don’t have source code.

The other is to implement the sandbox feature inside your code or someone else’s code. The

function “sandbox_init” will place the process into a sandbox using one of the pre-defined profiles

below (they are also available to sandbox-exec, although with a different name).

These profiles are:

• kSBXProfileNoInternet : TCP/IP networking is prohibited.

• kSBXProfileNoNetwork : All sockets-based networking is prohibited.

• kSBXProfileNoWrite : File system writes are prohibited.

• kSBXProfileNoWriteExceptTemporary : File system writes are restricted to the temporary folder

/var/tmp and the folder specified by theconfstr(3) configuration variable

_CS_DARWIN_USER_TEMP_DIR.

• kSBXProfilePureComputation : All operating system services are prohibited.

Check the sandbox_init manpage for more information.

OS X Lion introduces Application Sandboxing3, a different way of applying sandboxing but with the

same underlying technology.

Now let’s focus on sandbox-exec - the best alternative for most users.

The sandbox-exec supports the pre-defined profiles but also custom profiles. Custom profiles are

written in SBPL – Sandbox Profile Language (a “Scheme embedded domain specific language”

using Dion’s definition). Examples can be found at “/usr/share/sandbox”. These are used to

sandbox some system daemons. The next chapters describe the different operations, filters and

modifiers available to write custom profiles.

The syntax for sandbox-exec command is:

sandbox-exec [- f profi le-f i le] [-n profi le-name] [-p profi le-str ing] [-D key=value . . .]

command [arguments . . .]

The –f switch should be used for loading custom profiles. Either you can use the absolute path to

the profile or just the name of the profile, as long it is located at one of the these folders:

§ /Library/Sandbox/Profiles

§ /System/Library/Sandbox/Profiles

§ /usr/share/sandbox

Using full path example:

$ sandbox-exec –f /usr/share/sandbox/bsd.sb /bin/ls

Using profile name example:

$ sandbox-exec –f bsd /bin/ls

3
http://developer.apple.com/library/mac/#documentation/Security/Conceptual/CodeSigningGuide/Introduction/Introduction.html#//apple_
ref/doc/uid/TP40005929-CH1-SW1

Apple's Sandbox Guide v1.0

 5

where bsd.sb is located at /usr/share/sandbox

You can also use custom profiles writing from the input, using the –p switch.

The example from Dion’s paper:

$ sandbox-exec -p ’

> (version 1)

> (allow default)

> (deny file-read-data

> (regex #"^/private/tmp/dump\.c$"))

> ’ /bin/sh

The –n switch is used to load one of the pre-defined profiles. As previously pointed out, the profiles

names are different from sandbox_init. Use the following table as reference.

Sandbox_init Sandbox-exec

kSBXProfileNoInternet no-internet

kSBXProfileNoNetwork no-network

kSBXProfileNoWriteExceptTemporary no-write-except-temporary

kSBXProfileNoWrite no-write

kSBXProfilePureComputation pure-computation

Example:

$ sandbox-exec -n no-internet ping www.google.com

PING www.l.google.com (209.85.148.106): 56 data bytes

ping: sendto: Operation not permitted

Logging, by default, is written to “/var/log/system.log”. It is very useful (well, essential!) to do a

“tail –f” to that file while developing your custom profiles.

One available feature is automatic generation of rules using the trace feature. A trace file with

automatic rules for denied operations will be created. Then it can be simplified using the

“sandbox-simplify” command and integrated in your scripts. Please check point 5.5.2 for more

details (the operation isn’t as automatic as it might appear!).

4	 -‐	 Anatomy	 of	 a	 custom	 profile	

A profile is composed of actions on operations, modifiers, filters, options and (optionally)

comments. To simplify things I will call everything commands except for comments.

The core of custom profiles are operations, which are what you want to control and limit access to.

Examples of operations are read files, write files, access a network port, send signals, etc. Most

operations can have filters to improve granularity, while others are binary only (allow or deny).

Apple's Sandbox Guide v1.0

 6

The first thing to be configured is the version of the SBPL. For now there’s only version 1 so this

should be common to all scripts.

Additionally you can configure the logging option, with the “debug” command. Two options are

available, “all”, which should log all operations (allowed or not), and “deny”, which logs only denied

operations. The option “all” doesn’t seem to work (not implemented? requires a different log

level?) but the “deny” option is very useful at the custom profile writing and debugging stage.

Other profiles can be included using the “import” command, for example a profile with common

rules to be shared among daemons, which is what bsd.sb is for BSD daemons.

The default action can be configured either to deny or to allow. This will depend on the type of

profile you are interested to achieve.

Comments should start with semicolon (;) and are valid until the end of the line.

5	 -‐	 Commands	 Reference	

All commands are enclosed into parenthesis. In each example, the “$” symbol means command

execution at the shell.

5.1	 –	 Actions	

There are two available actions, allow or deny.

Actions apply only to the operations defined below.

Syntax:

(action operation [filter modifiers])

Example:

• (deny default)

All operations will be denied unless explicitly allowed (default is an operation). This is a whitelist

mode.

• (allow default)

All operations will be allowed unless explicitly denied. In this case we have a blacklist mode.

5.2	 –	 Operations	

As previously described, the sandbox supports different type of operations. Almost all operations

have global and granular modes. Global means that the whole category of operation can be

configured. For example, the “file*” operation will control all type of file related operations. But we

can also be more granular and allow file reads and deny file writes (and even be a little more

specific in these two operations).

The following table shows the global operations, including the ones without granular modes.

Default File* Ipc* Mach* Network* Process*

Signal Sysctl* System*

Operations can have filters and modifiers. Modifiers apply to all operations (except the mach ones)

while filters don’t.

Apple's Sandbox Guide v1.0

 7

I have tried to find all kernel functions where operations apply (for example, an operation such as

file-write-xattr is implemented in a few kernel functions). This is described in the item Applies to,

when available.

All the available operations are now described.

Default	

Syntax: (action default [modifier])

Actions: allow deny

Filters: n/a

Modifiers: send-signal no-log

Descript ion:

As the name implies, this is the default action if no other operation matches. It doesn’t matter

where this operation is configured, either at the beginning or the end of the profile. The engine will

only hit the default operation if no explicit match can be found. Searching for operations will stop

when the first explicit match is hit. This means that a deny action followed by an allow action to

the same operation and target will never trigger the allow action, it will always be denied.

Applies to:

All operations that Sandbox module supports/implements.

Examples:

§ (allow default)

To create a blacklist profile.

§ (deny default)

To create a whitelist profile.

§ (deny default (with no-log))

To create a whitelist profile without logging.

File*	

Syntax: (action file* [filter] [modifier])

Actions: allow deny

Filters: path file-mode

Modifiers: send-signal no-log

Descript ion:

This operation will control file related operations such as reads, writes, extended attributes, etc.

Applies to:

All file operations described in detail below.

Example(s):

§ (deny file*)

This will deny all file related operations to any file.

§ (deny file* (literal “/mach_kernel”))

Apple's Sandbox Guide v1.0

 8

This will deny all file related operations that have /mach_kernel as target.

File-‐chroot	

Syntax: (action file-chroot [filter] [modifier])

Actions: allow deny

Filters: path file-mode

Modifiers: send-signal no-log

Descript ion:

Control whether the target should be allowed or not to chroot() into the specified directory.

Applies to:

chroot, link

Example(s):

§ (deny file-chroot (literal “/”))

sandbox-exec -f ls2 /usr/sbin/chroot -g nobody / /bin/ls

chroot: /: Operation not permitted

Log output:

Sep 2 18:45:02 macbox sandboxd[40841]: chroot(40840) deny file-chroot /

File-‐ioctl	 	

Syntax: (action file-ioctl [filter] [modifier])

Actions: allow deny

Filters: path file-mode

Modifiers: send-signal no-log

Descript ion:

Determine whether the target can perform the ioctl operation.

Warning: Since ioctl data is opaque from the standpoint of the MAC framework, and since ioctls

can affect many aspects of system operation, policies must exercise extreme care when

implementing access control checks.

Applies to:

vn_ioctl, link

Example(s):

§ (allow file-ioctl (literal "/dev/dtracehelper"))

File-‐read*	

Syntax: (action file-read* [filter] [modifier])

Actions: allow deny

Filters: path file-mode

Modifiers: send-signal no-log

Apple's Sandbox Guide v1.0

 9

Descript ion:

Controls all available read operations described below.

Applies to:

exchangedata, link

Example(s):

§ (deny file-read* (literal “/mach_kernel”))

$ sandbox-exec -f ls2 cat /mach_kernel

cat: /mach_kernel: Operation not permitted

Log output:

Sep 2 00:13:12 macbox sandboxd[24486]: cat(24485) deny file-read-data /mach_kernel

$ sandbox-exec -f ls2 ls /mach_kernel

ls: /mach_kernel: Operation not permitted

Log output:

Sep 2 00:13:46 macbox sandboxd[24498]: ls(24504) deny file-read-metadata /mach_kernel

$ sandbox-exec -f ls2 xattr /mach_kernel

xattr: No such file: /mach_kernel

Log output:

Sep 2 00:13:38 macbox sandboxd[24498]: Python(24497) deny file-read-xattr /mach_kernel

Sep 2 00:13:38 macbox sandboxd[24498]: Python(24497) deny file-read-metadata

/mach_kernel

File-‐read-‐data	

Syntax: (action file-read-data [filter] [modifier])

Actions: allow deny

Filters: path file-mode

Modifiers: send-signal no-log

Descript ion:

Give or refuse read access to target file contents.

Applies to:

access1, getvolattrlist, link, __mac_mount, vn_open_auth, union_dircheck

Example(s):

§ (deny file-read-data (literal “/mach_kernel”))

$ sandbox-exec -f ls2 ls /mach_kernel

/mach_kernel

$ sandbox-exec -f ls2 cat /mach_kernel

cat: /mach_kernel: Operation not permitted

Log output:

Sep 2 00:18:59 macbox sandboxd[24653]: cat(24652) deny file-read-data /mach_kernel

Apple's Sandbox Guide v1.0

 10

File-‐read-‐metadata	

Syntax: (action file-read-metadata [filter] [modifier])

Actions: allow deny

Filters: path file-mode

Modifiers: send-signal no-log

Descript ion:

Control read access to the files-system metadata. For example “ls” will not work against the target

(if action is deny) while a “cat” will (because it is accessing the contents, not the metadata).

Applies to:

getattrlist_internal, link, namei, readlink, CheckAccess, vn_stat

Example(s):

§ (deny file-read-metadata (literal "/mach_kernel"))

$ cat /mach_kernel

????uZ$

$ sandbox-exec -f ls2 cat /mach_kernel

cat: /mach_kernel: Operation not permitted

Log output:

Sep 2 00:24:11 macbox sandboxd[24809]: ls(24808) deny file-read-metadata /mach_kernel

File-‐read-‐xattr	

Syntax: (action file-read-xattr [filter] [modifier])

Actions: allow deny

Filters: path file-mode xattr

Modifiers: send-signal no-log

Descript ion:

This operation will control read access to file’s extended attributes.

Applies to:

vn_getxattr, link, vn_listxattr

Example(s):

§ (deny file-read-xattr (literal “/mach_kernel”)

Result without sandbox:

$ xattr /mach_kernel

com.apple.FinderInfo

Result with sandbox:

$ sandbox-exec -f ls2 xattr /mach_kernel

xattr: [Errno 1] Operation not permitted: '/mach_kernel'

Apple's Sandbox Guide v1.0

 11

File-‐revoke	

Syntax: (action file-revoke [filter] [modifier])

Actions: allow deny

Filters: path file-mode

Modifiers: send-signal no-log

Descript ion:

Controls access to revoke (void all references to file by ripping underlying filesystem away from

vnode).

Applies to:

revoke, link

Example(s):

N/A

File-‐write*	

Syntax: (action file-write* [filter] [modifier])

Actions: allow deny

Filters: path file-mode

Modifiers: send-signal no-log

Descript ion:

Controls all available write operations described below.

Applies to:

unp_bind, mknod, mkfifo1, symlink, mkdir1, vn_open_auth, exchangedata, link, rename,

setattrlist_internal, unlink1, rmdir

Example(s):

§ (deny file-write* (literal “/test”))

$ sandbox-exec -f ls2 touch /test

touch: /test: Operation not permitted

Log output:

Sep 2 21:05:46 macbox sandboxd[45341]: touch(45340) deny file-write* /test

File-‐write-‐data	

Syntax: (action file-write-data [filter] [modifier])

Actions: allow deny

Filters: path file-mode

Modifiers: send-signal no-log

Apple's Sandbox Guide v1.0

 12

Description:

Give or refuse write access to the contents of the target file.

Warning: this doesn’t seem to work as expected if action is deny! File-read-data works as expected

– content can’t be read – but for some reason this one doesn’t deny write contents to the target

file (only file-write* works).

For example this works (data is written):

(allow file-write-data

 (literal "/private/tmp/test3")

)

(deny file-write* (literal "/private/tmp/test3"))

While this doesn’t work (data is written when it shouldn’t):

(deny file-write-data

 (literal "/private/tmp/test3")

)

(allow file-write* (literal "/private/tmp/test3"))

Or this also doesn’t work (data is written when it shouldn’t):

(allow default)

(deny file-write-data (literal “/private/tmp/test3”))

Applies to:

getvolattrlist, access1, link, __mac_mount,vn_open_auth, union_dircheck, fcntl_nocancel,

truncate, ftruncate

Example(s):

(deny file-write-data (literal “/private/tmp/test3”))

File-‐write-‐flags	

Syntax: (action file-write-flags [filter] [modifier])

Actions: allow deny

Filters: path file-mode

Modifiers: send-signal no-log

Descript ion:

Control access to file flags (check manpage for chflags).

Applies to:

chflags1, link

Example(s):

§ (deny file-write-flags (literal “/private/tmp/test”))

$ sandbox-exec -f ls2 chflags nohidden /tmp/test

chflags: /tmp/test: Operation not permitted

Apple's Sandbox Guide v1.0

 13

Log output:

Sep 2 19:29:59 macbox sandboxd[42198]: chflags(42197) deny file-write-flags

/private/tmp/test

File-‐write-‐mode	

Syntax: (action file-write-mode [filter] [modifier])

Actions: allow deny

Filters: path file-mode

Modifiers: send-signal no-log

Descript ion:

Control access to file modes.

Applies to:

chmod2, link

Example(s):

§ (deny file-write-mode (literal “/private/tmp/test”))

$ sandbox-exec -f ls2 chmod 777 /tmp/test

chmod: Unable to change file mode on /tmp/test: Operation not permitted

Log output:

Sep 2 19:54:35 macbox sandboxd[43051]: chmod(43050) deny file-write-mode

/private/tmp/test

File-‐write-‐mount	

Syntax: (action file-write-mount [filter] [modifier])

Actions: allow deny

Filters: path file-mode

Modifiers: send-signal no-log

Descript ion:

Access control check for mounting a file system.

Applies to:

__mac_mount, prepare_coveredvp, mount_begin_update, link

Example(s):

N/A (tried different combinations and mount still works!)

File-‐write-‐owner	

Syntax: (action file-write-owner [filter] [modifier])

Actions: allow deny

Filters: path file-mode

Modifiers: send-signal no-log

Apple's Sandbox Guide v1.0

 14

Description:

Control access to file ownership changes.

Applies to:

chown1, fchown, link

Example(s):

§ (deny file-write-owner (literal "/private/tmp/test"))

sandbox-exec -f ls2 chown nobody /tmp/test

chown: /tmp/test: Operation not permitted

Log output:

Sep 2 20:05:48 macbox sandboxd[43419]: chown(43418) deny file-write-owner

/private/tmp/test

File-‐write-‐setugid	

Syntax: (action file-write-setugid [filter] [modifier])

Actions: allow deny

Filters: path file-mode

Modifiers: send-signal no-log

Descript ion:

Access control check for setting file mode. It (seems to) apply only to suid and sgid bits.

Applies to:

chmod2, link

Example(s):

§ (deny file-write-setugid (regex “^/private/tmp/.*”))

sandbox-exec -f ls2 chmod 4000 /tmp/testsuid

Log output:

Sep 12 22:46:57 macbox sandboxd[80230]: chmod(80229) deny file-write-setugid

/private/tmp/testsuid

sandbox-exec -f ls2 chmod 4000 ~/testesuid

ls -la ~/testsuid

---S------ 1 root staff 9 Sep 12 22:46 /Users/reverser/testsuid

File-‐write-‐times	

Syntax: (action file-write-times [filter] [modifier])

Actions: allow deny

Filters: path file-mode

Modifiers: send-signal no-log

Descript ion:

Control set the access and modification times of a file.

Apple's Sandbox Guide v1.0

 15

Applies to:

setutimes, link

Example(s):

N/A

File-‐write-‐unmount	

Syntax: (action file-write-unmount [filter] [modifier])

Actions: allow deny

Filters: path file-mode

Modifiers: send-signal no-log

Descript ion:

Access control check for unmounting a filesystem.

Applies to:

unmounts, link

Example(s):

§ (deny file-write-unmount (literal "/Volumes/Mac OS X Install ESD"))

sandbox-exec -f ls2 umount /Volumes/Mac\ OS\ X\ Install\ ESD/

umount: unmount(/Volumes/Mac OS X Install ESD): Operation not permitted

Log output:

Sep 2 20:21:19 macbox sandboxd[43908]: umount(43911) deny file-write-unmount

/Volumes/Mac OS X Install ESD

File-‐write-‐xattr	

Syntax: (action file-write-xattr [filter] [modifier])

Actions: allow deny

Filters: path file-mode xattr

Modifiers: send-signal no-log

Descript ion:

This operation will control write access to the file extended attributes.

Applies to:

vn_removexattr, link, vn_setxattr

Example(s):

§ (deny file-write-xattr (literal "/test”))

$ xattr -w test 123 /test

$ xattr -l /test

test: 123

$ sandbox-exec -f ls2 xattr -w test2 123 /test

xattr: [Errno 1] Operation not permitted: '/test'

Apple's Sandbox Guide v1.0

 16

Log output:

Sep 2 00:38:13 macbox sandboxd[25217]: Python(25216) deny file-write-xattr /test

Ipc*	

Syntax: (action ipc* [modifier])

Actions: allow deny

Filters: n/a

Modifiers: send-signal no-log

Descript ion:

This operation will IPC related operations described below.

Applies to:

All IPC operations described below.

Example(s):

§ (deny ipc*)

Ipc-‐posix*	

Syntax: (action ipc-posix* [modifier])

Actions: allow deny

Filters: n/a

Modifiers: send-signal no-log

Descript ion:

This operation will IPC POSIX related operations described below.

Applies to:

All IPC-Posix operations described below.

Example(s):

§ (deny ipc-posix*)

Ipc-‐posix-‐sem	

Syntax: (action ipc-posix-sem [modifier])

Actions: allow deny

Filters: n/a

Modifiers: send-signal no-log

Descript ion:

Controls access to POSIX semaphores functions (create, open, post, unlink, wait).

Applies to:

sem_open, sem_post, sem_unlink, sem_wait_nocancel, sem_trywait

Example(s):

Apple's Sandbox Guide v1.0

 17

§ (allow ipc-posix-sem)

Ipc-‐posix-‐shm	

Syntax: (action ipc-posix-shm [modifier])

Actions: allow deny

Filters: n/a

Modifiers: send-signal no-log

Descript ion:

Controls access to POSIX shared memory region functions (create, mmap, open, stat, truncate,

unlink).

Applies to:

shm_open, pshm_mmap, pshm_stat, pshm_truncate, shm_unlink

Example(s):

§ (allow ipc-posix-shm)

Ipc-‐sysv*	

Syntax: (action ipc-sysv* [modifier])

Actions: allow deny

Filters: n/a

Modifiers: send-signal no-log

Descript ion:

This operation will control all IPC SysV related operations described below.

Applies to:

All IPC SysV operations described below.

Example(s):

§ (allow ipc-sysv*)

Ipc-‐sysv-‐msg	

Syntax: (action ipc-sysv-msg [modifier])

Actions: allow deny

Filters: n/a

Modifiers: send-signal no-log

Definit ion:

Controls access to System V messages functions (enqueue, msgrcv, msgrmid, msqctl, msqget,

msqrcv, msqsnd).

Applies to:

msgsnd_nocancel, msgrcv_nocancel, msgctl, msgget,

Apple's Sandbox Guide v1.0

 18

Example(s):

§ (allow ipc-sysv-msg)

Ipc-‐sysv-‐sem	

Syntax: (action ipc-sysv-sem [modifier])

Actions: allow deny

Filters: n/a

Modifiers: send-signal no-log

Definit ion:

Controls access to System V semaphores functions (semctl, semget, semop).

Applies to:

Semctl, semget, semop

Example(s):

§ (allow ipc-sysv-sem)

Ipc-‐sysv-‐shm	

Syntax: (action ipc-sysv-shm [modifier])

Actions: allow deny

Filters: n/a

Modifiers: send-signal no-log

Definit ion:

Controls access to mapping System V shared memory functions (shmat, shmctl, shmdt, shmget).

Applies to:

Shmat, shmctl, shmdt, shmget_existing

Example(s):

§ (allow ipc-sysv-shm)

Mach*	

Syntax: (action mach* [modifier])

Actions: allow deny

Filters: n/a

Modifiers: send-signal no-log

Definit ion:

Controls access to all Mach related functions described below.

Applies to:

All Mach operations described below.

Example(s):

Apple's Sandbox Guide v1.0

 19

§ (deny mach*)

Mach-‐bootstrap	

Syntax: (action mach-bootstrap [modifier])

Actions: allow deny

Filters: n/a

Modifiers: send-signal no-log

Definit ion:

Used only to apply sandbox? To create/access new mach ports?

Applies to:

N/A

Example(s):

N/A

Mach-‐lookup	

Syntax: (action mach-lookup [modifier])

Actions: allow deny

Filters: mach

Modifiers: send-signal no-log

Definit ion:

Mach IPC communications/messages.

Most applications require access to some basic Mach services (bsd.sb configures the basic ones).

Applies to:

N/A

Example(s):

§ (allow mach-lookup

(global-name “com.apple.system.logger”)

(global-name-regex #"^com.apple.DeviceLink.AppleMobileBackup*")

)

Mach-‐priv*	

Syntax: (action mach-priv* [modifier])

Actions: allow deny

Filters: n/a

Modifiers: send-signal no-log

Definit ion:

Control access to all the mach-priv operations defined below.

Apple's Sandbox Guide v1.0

 20

Applies to:

set_security_token, task_for_pid

Example(s):

§ (allow mach-priv*)

Mach-‐priv-‐host-‐port	

Syntax: (action mach-priv-host-port [modifier])

Actions: allow deny

Filters: n/a

Modifiers: send-signal no-log

Definit ion:

Access control check for retrieving a process's host port.

Applies to:

set_security_token

Example(s):

N/A

Mach-‐priv-‐task-‐port	

Syntax: (action mach-priv-task-port [modifier])

Actions: allow deny

Filters: n/a

Modifiers: send-signal no-log

Definit ion:

Access control check for getting a process's task port, task_for_pid(). Standard restrictions still

apply, such as task_for_pid only available to root or group procmod.

Applies to:

task_for_pid

Example(s):

§ (deny mach-priv-task-port)

Mach-‐task-‐name	

Syntax: (action mach-task-name [modifier])

Actions: allow deny

Filters: n/a

Modifiers: send-signal no-log

Definit ion:

Apple's Sandbox Guide v1.0

 21

Access control check for getting a process's task name, task_name_for_pid(). Standard

restrictions still apply, such as task_for_pid only available to root or group procmod.

Applies to:

task_name_for_pid

Example(s):

§ (deny mach-task-name)

	

Network*	

Syntax: (action network* [filter] [modifier])

Actions: allow deny

Filters: network path file-mode

Modifiers: send-signal no-log

Definit ion:

Controls all available network operations described below. It has no support for IP filtering, it must

be localhost or * (check network filter for more information).

Applies to:

soo_read, soreceive, recvit, listen, bind, unp_bind, connect_nocancel, sendit, soo_write,

unp_connect

Example(s):

§ (deny network* (remote ip “*:80”))

$ sandbox-exec -f ls2 nc www.google.com 80

Log output:

Sep 2 21:12:00 macbox sandboxd[45542]: nc(45540) deny network-outbound 74.125.39.99:80

Network-‐inbound	

Syntax: (action network-inbound [filter] [modifier])

Actions: allow deny

Filters: network path file-mode

Modifiers: send-signal no-log

Definit ion:

Controls network inbound operations. It has no support for IP filtering, it must be localhost or *

(check network filter for more information).

“A socket has a queue for receiving incoming data. When a packet arrives on the wire, it

eventually gets deposited into this queue, which the owner of the socket drains when they read

from the socket's file descriptor.”

Applies to:

soo_read, soreceive, recvit, listen

Apple's Sandbox Guide v1.0

 22

Example(s):

§ (allow network-inbound (local ip4 "*:22))

Network-‐bind	

Syntax: (action network-bind [filter] [modifier])

Actions: allow deny

Filters: network path file-mode

Modifiers: send-signal no-log

Definit ion:

Control access to socket bind(). It has no support for IP filtering, it must be localhost or * (check

network filter for more information).

Applies to:

bind, unp_bind

Example(s):

§ (deny network-bind (local ip "*:7890"))

$ sandbox-exec -f ls2 nc -l 7890

nc: Operation not permitted

Log output:

Sep 2 21:08:41 macbox sandboxd[45438]: nc(45437) deny network-bind 0.0.0.0:7890

Network-‐outbound	

Syntax: (action network-outbound [filter] [modifier])

Actions: allow deny

Filters: network path file-mode

Modifiers: send-signal no-log

Definit ion:

Controls access to send data to the socket. It has no support for IP filtering, it must be localhost or

* (check network filter for more information).

Applies to:

connect_nocancel, sendit, soo_write, unp_connect

Example(s):

§ (deny network-outbound)

This will deny any packets going out from the target application.

§ (deny network-outbound (remote ip “*:80”))

$ sandbox-exec -f ls2 nc www.google.com 80

Log output:

Sep 2 22:29:03 macbox sandboxd[47760]: nc(47758) deny network-outbound

74.125.39.106:80

§ (allow network-outbound (remote unix-socket (path-literal "/private/var/run/syslog")))

Apple's Sandbox Guide v1.0

 23

Allow access to the syslog unix socket.

Process*	

Syntax: (action process* [modifier])

Actions: allow deny

Filters: n/a

Modifiers: send-signal no-log

Definit ion:

Controls all available process operations described below. One important detail is that no filters

are available here but are on process-exec.

Applies to:

link, exec_check_permissions, getvolattrlist, access1, fork1

Example(s):

§ (deny process*)

$ sandbox-exec -f ls2 ls

sandbox-exec: ls: Operation not permitted

Log output:

Sep 2 22:36:09 macbox sandboxd[47975]: sandbox-exec(47980) deny process-exec /bin/ls

Process-‐exec	

Syntax: (action process-exec [filter] [modifier])

Actions: allow deny

Filters: path file-mode

Modifiers: send-signal no-log no-sandbox

Definit ion:

Control process execution.

Applies to:

link, exec_check_permissions, getvolattrlist, access1

Example(s):

§ (deny process-exec (literal “/bin/ls”))

$ sandbox-exec -f ls2 /bin/ls

sandbox-exec: /bin/ls: Operation not permitted

$ sandbox-exec -f ls2 ls

sandbox-exec: ls: Operation not permitted

Log output:

Sep 2 01:16:57 macbox sandboxd[26360]: sandbox-exec(26359) deny process-exec /bin/ls

Sep 2 01:17:00 macbox sandboxd[26360]: sandbox-exec(26363) deny process-exec /bin/ls

Apple's Sandbox Guide v1.0

 24

Process-‐fork	

Syntax: (action process-fork [modifier])

Actions: allow deny

Filters: n/a

Modifiers: send-signal no-log

Definit ion:

Control access to fork and vfork.

Applies to:

fork1

Example(s):

§ (deny process-fork)

$./forktest

child!

parent!

$ sandbox-exec -f ls2 ./forktest

parent!

Log output:

Sep 2 01:23:52 macbox sandboxd[26677]: forktest(26676) deny process-fork

Signal	

Syntax: (action signal [filter] [modifier])

Actions: allow deny

Filters: signal

Modifiers: send-signal no-log

Definit ion:

Control if program can send signals to itself, processes in the same group or all other processes.

Applies to:

cansignal

Example(s):

§ (deny signal (target others))

The sandboxed process will not be able to send signals to other processes.

$ sandbox-exec -f ls2 kill -ALRM 10229

kill: 10229: Operation not permitted

Log output:

Sep 2 10:45:01 macbox sandboxd[31416]: kill(31418) deny signal

Sysctl*	

Syntax: (action sysctl* [modifier])

Apple's Sandbox Guide v1.0

 25

Actions: allow deny

Filters: n/a

Modifiers: send-signal no-log

Definit ion:

Control all access to sysctl() and its variants, sysctlbyname and sysctlnametomib.

Applies to:

sysctl, sysctlbyname, sysctlnametomib

Example(s):

§ (deny sysctl*)

$ sandbox-exec -f ls2 sysctl debug

Log output:

Sep 2 01:33:50 macbox sandboxd[26952]: sysctl(26960) deny sysctl-read

sandbox-exec -f ls2 sysctl -w debug.bpf_bufsize=1024

second level name bpf_bufsize in debug.bpf_bufsize is invalid

This happens because sysctl-read is also denied so it can’t read the name.

Sysctl-‐read	

Syntax: (action sysctl-read [modifier])

Actions: allow deny

Filters: n/a

Modifiers: send-signal no-log

Definit ion:

Control read access to sysctl() and its variants, sysctlbyname and sysctlnametomib.

Applies to:

sysctl, sysctlbyname, sysctlnametomib

Example(s):

§ (deny sysctl-read)

$ sandbox-exec -f ls2 sysctl debug

Log output:

Sep 2 01:40:01 macbox sandboxd[27171]: sysctl(27170) deny sysctl-read

sandbox-exec -f ls2 sysctl -w debug.bpf_bufsize=1024

second level name bpf_bufsize in debug.bpf_bufsize is invalid

Sysctl-‐write	

Syntax: (action sysctl-write [modifier])

Actions: allow deny

Filters: n/a

Modifiers: send-signal no-log

Apple's Sandbox Guide v1.0

 26

Definit ion:

Control write access to sysctl() and its variants, sysctlbyname and sysctlnametomib.

Note: there seems to be a bug in this implementation (Snow Leopard at least), where a (deny

sysctl-write) requires a (allow sysctl-read), even if we have a (allow default).

Test command:

sandbox-exec -f ls2 sysctl -w debug.bpf_bufsize=1024

Test profile:

(version 1)

(debug all)

(allow default)

(deny sysctl-write)

But it works if written this way:

(version 1)

(debug all)

(allow default)

(deny sysctl-write)

(allow sysctl-read)

Applies to:

Sysctl

Example:

N/A

System*	

Syntax: (action system* [modifier])

Actions: allow deny

Filters: n/a

Modifiers: send-signal no-log

Definit ion:

Controls all available system operations described below.

Applies to:

acct, setaudit, setauid, audit, auditon, auditctl, fsctl, setlcid, nfssvc, reboot, settimeofday, adjtime,

socket, macx_swapoff, macx_swapon, fcntl

Example(s):

§ (deny system*)

sandbox-exec -f ls2 date 01212200

date: settimeofday (timeval): Operation not permitted

Log output:

Sep 2 22:49:30 macbox sandboxd[48428]: date(48435) deny system-set-time

Apple's Sandbox Guide v1.0

 27

System-‐acct	

Syntax: (action system-acct [modifier])

Actions: allow deny

Filters: n/a

Modifiers: send-signal no-log

Descript ion:

Determine whether the target should be allowed to enable accounting, based on its label and the

label of the accounting log file. See acct(5) for more information.

Applies to:

acct

Example(s):

§ (allow system-acct)

System-‐audit	

Syntax: (action system-audit [modifier])

Actions: allow deny

Filters: n/a

Modifiers: send-signal no-log

Descript ion:

Determine whether the target can submit an audit record for inclusion in the audit log via the

audit() system call.

Applies to:

setaudit, setauid, audit, auditon, auditctl

Example(s):

§ (allow system-audit)

System-‐fsctl	

Syntax: (action process* [modifier])

Actions: allow deny

Filters: n/a

Modifiers: send-signal no-log

Descript ion:

Control access to fsctl().

Apple's Sandbox Guide v1.0

 28

Warning: The fsctl() system call is directly analogous to ioctl(); since the associated data is opaque

from the standpoint of the MAC framework and since these operations can affect many aspects of

system operation, policies must exercise extreme care when implementing access control checks.

Applies to:

fsctl

Example(s):

§ (deny system-fsctl)

	

System-‐lcid	

Syntax: (action system-lcid [modifier])

Actions: allow deny

Filters: n/a

Modifiers: send-signal no-log

Descript ion:

Determine whether the target can relabel itself to the supplied new label (newlabel). This access

control check is called when the mac_set_lctx/lcid system call is invoked. A user space

application will supply a new value, the value will be internalized and provided in newlabel.

Applies to:

setlcid

Example(s):

§ (allow system-lcid)

System-‐mac-‐label	

Syntax: (action system-mac-label [modifier])

Actions: allow deny

Filters: n/a

Modifiers: send-signal no-log

Descript ion:

Determine whether the target can perform the mac_set_fd operation. The mac_set_fd operation

is used to associate a MAC label with a file.

Applies to:

N/A

Example(s):

§ (deny system-mac-label)

System-‐nfssvc	

Syntax: (action system-nfssvc [modifier])

Apple's Sandbox Guide v1.0

 29

Actions: allow deny

Filters: n/a

Modifiers: send-signal no-log

Descript ion:

Determine whether the target should be allowed to call nfssrv(2).

Applies to:

nfssvc

Example(s):

§ (allow system-nfssvc)

System-‐reboot	

Syntax: (action system-reboot [modifier])

Actions: allow deny

Filters: n/a

Modifiers: send-signal no-log

Descript ion:

Controls if target can reboot system.

Note: doesn’t seem to work!

Applies to:

reboot

Example(s):

§ (deny system-reboot)

System-‐set-‐time	

Syntax: (action system-set-time [modifier])

Actions: allow deny

Filters: n/a

Modifiers: send-signal no-log

Descript ion:

Controls access to the system clock.

Applies to:

settimeofday, adjtime

Example(s):

§ (deny system-set-time)

sandbox-exec -f ls2 date 01212200

date: settimeofday (timeval): Operation not permitted

Log output:

Apple's Sandbox Guide v1.0

 30

Sep 2 22:49:30 macbox sandboxd[48428]: date(48435) deny system-set-time

System-‐socket	

Syntax: (action system-socket [modifier])

Actions: allow deny

Filters: n/a

Modifiers: send-signal no-log

Descript ion:

Control access to create sockets.

Applies to:

socket

Example(s):

§ (deny system-socket)

System-‐swap	

Syntax: (action system-swap [modifier])

Actions: allow deny

Filters: n/a

Modifiers: send-signal no-log

Descript ion:

Access control check for swap devices (swapon/swapoff).

Applies to:

macx_swapoff, macx_swapon

Example(s):

§ (allow system-swap)

System-‐write-‐bootstrap	

Syntax: (action system-write-bootstrap [modifier])

Actions: allow deny

Filters: n/a

Modifiers: send-signal no-log

Descript ion:

???

Applies to:

fcntl

Example(s):

N/A

Apple's Sandbox Guide v1.0

 31

Job-‐creation	

Syntax: (action job-creation [filter] [modifier])

Actions: allow deny

Filters: path

Modifiers: send-signal no-log

Descript ion:

Not implemented ???

Applies to:

N/A

Example(s):

N/A

Mach-‐per-‐user-‐lookup	

Syntax: (action mach-per-user-lookup [modifier])

Actions: allow deny

Filters: n/a

Modifiers: send-signal no-log

Descript ion:

???

Applies to:

N/A

Example(s):

N/A

5.3	 –	 Filters	

Filters can be applied to the operations that support them, allowing better control and granularity.

The filters can be path names, file names, IP addresses, extended attributes, file modes. Regular

expressions are supported where described.

The following table resumes the existing filters:

path network file-mode xattr mach signal

Anything included in square braces “[]” is optional.

5.3.1	 -‐	 Path	

Description:

Match filenames or paths.

Three different modes are supported, regular expressions, literal, and subpath.

Apple's Sandbox Guide v1.0

 32

Symlinks are resolved so a path filter (literal or regex matching the beginning) to “/tmp/testfile”

will fail because “/tmp” is a symbolic link to “/private/tmp”. In this case the correct filter should

be “/private/tmp/testfile”.

1. Regular Expressions

Syntax:

(regex EXPRESSION)

Example(s):

§ (allow file-read* (regex #”^/usr/lib/*”))

This will allow file reading access to all files available under /usr/lib/.

Multiple regular expressions are supported, so the operation can apply to multiple paths and/or

files.

§ (allow file-read*

 (regex

#"^/usr/lib/*"

#"^/dev/*"

#"^/System/Library/Frameworks/*"

)

)

2. Literal

Syntax:

(literal PATH)

Example(s):

§ (deny file-read* (literal “/dev”))

This will deny all file read access to /dev only, but everything else inside /dev isn’t protected by

this operation.

$ sandbox-exec -f ls2 ls /dev

ls: /dev: Operation not permitted

$ sandbox-exec -f ls2 ls /dev/dtrace

/dev/dtrace

3. Subpath

Syntax:

(subpath PATH)

Note: the PATH never ends with a slash (/).

Example(s):

§ (deny file-read* (subpath “/dev”))

In this case, everything under /dev will be denied read access (including /dev itself).

5.3.2	 -‐	 Network	

Description:

Filter by network protocol and source or destination.

Apple's Sandbox Guide v1.0

 33

Syntax:

(local ip|ip4|ip6|tcp|tcp4|tcp6|udp|udp4|udp6 ["IP:PORT"])

(remote ip|ip4|ip6|tcp|tcp4|tcp6|udp|udp4|udp6 ["IP:PORT"])

(remote unix|unix-socket [path-literal PATH])

The default “IP:PORT” is “*:*”. The only valid input for IP is localhost or *, meaning that you can

only filter by port.

The aliases “from”, “to”, and “unix-socket” can be used instead of “local”, “remote”, and “unix”.

The ICMP protocol is included in the IP and UDP options.

Note:

In this case, PATH must be “path-literal” instead of “regex”, “literal”, or “subpath”.

Example(s):

§ (deny network* (remote ip "*:*"))

Deny IP access to any remote host.

$ sandbox-exec -f ls2 ping www.google.com

PING www.l.google.com (74.125.39.147): 56 data bytes

ping: sendto: Operation not permitted

Log output:

Sep 2 11:00:17 macbox sandboxd[31870]: ping(31869) deny network-outbound

74.125.39.147:0

§ (deny network* (remote tcp "*:*"))

Deny TCP access to any remote host.

$ sandbox-exec -f ls2 telnet www.google.com 80

Trying 74.125.39.147...

telnet: connect to address 74.125.39.147: Operation not permitted

Log output:

Sep 2 11:02:20 macbox sandboxd[31937]: telnet(31935) deny network-outbound

74.125.39.147:80

§ (deny network* (local tcp "*:*"))

Deny TCP access to localhost ports.

$ telnet localhost 22

Trying 127.0.0.1...

telnet: connect to address 127.0.0.1: Connection refused

Log output:

Sep 2 11:04:49 macbox sandboxd[32011]: telnet(32010) deny network-outbound 127.0.0.1:22

§ (allow network* (remote unix-socket (path-literal “/private/var/run/syslog”)))

Apple's Sandbox Guide v1.0

 34

	

5.3.3	 -‐	 File-‐mode	

Description:

Match file mode bits.

Syntax:

(file-mode #oFILEMODE)

where FILEMODE is composed of 4 bits.

Note: The match will be successful is each bit is equal or higher, meaning by this that a #o0644

will be successfully matched by a file with a mode of 0644, 0744, 0657, etc.

Example(s):

(file-mode #o0644)

Filter will match if target has permissions of 0644 (-rw-r—r--) or higher.

5.3.4	 -‐	 Xattr	

Description:

Match the extended attribute name, not content.

Syntax:

(xattr REGEX)

Example(s):

§ (deny file-write-xattr (xattr “test_xattr”))

Deny writing the extended attribute named “test_xattr” to any file.

$ xattr -w test_xattr aaaa /tmp/xattr

$ xattr -l /tmp/xattr

test_xattr: aaaa

$ sandbox-exec -f ls2 xattr -w test_xattr aaaa /tmp/xattr

xattr: [Errno 1] Operation not permitted: '/tmp/xattr'

Log output:

Sep 2 11:48:02 macbox sandboxd[33295]: Python(33294) deny file-write-xattr

/private/tmp/xattr

5.3.5	 -‐	 Mach	

Description:

These are needed for things like getpwnam, hostname changes, & keychain. I don’t know what’s

the difference between global-name and local-name.

Syntax:

(global-name LITERAL)

(global-name-regex REGEX)

(local-name LITERAL)

(local-name-regex REGEX)

Example(s):

§ (allow mach-lookup (global-name "com.apple.bsd.dirhelper"))

Apple's Sandbox Guide v1.0

 35

§ (allow mach-lookup (global-name-regex “^com.apple.bsd*”))

5.3.6	 -‐	 Signal	

Description:

Filter the targets of the signals.

Syntax:

(target self|pgrp|others)

where,

self: sandboxed process itself

pgrp: group processes ?

others: all processes

Example(s):

§ (deny signal (target others))

The sandboxed process will not be able to send signals to other processes.

$ sandbox-exec -f ls2 kill -ALRM 10229

kill: 10229: Operation not permitted

Log output:

Sep 2 10:45:01 macbox sandboxd[31416]: kill(31418) deny signal

5.4	 –	 Modifiers	

There are three available modifiers, although one just applies to a single operation. The modifiers

are send-signal, no-log, and no-sandbox. To use them you will need the keyword “with”.

5.4.1	 -‐	 Send-‐signal	

Description:

The best description is found in Apple’s scripts:

“To help debugging, "with send-signal SIGFPE" will trigger a fake floating-point exception, which will

crash the process and show the call stack leading to the offending operation.

For the shipping version "deny" is probably better because it vetoes the operation without killing

the process.“

There is a special exception, where send-signal doesn’t apply to mach-* operations.

It can be applied to allow and deny actions.

Syntax:

(with send-signal SIGNAL)

Example(s):

§ (deny file-read* (with send-signal SIGFPE))

The target binary will crash with a floating point exception when it tries to read any file.

$ sandbox-exec -f ls2 cat /tmp/test

Floating point exception

5.4.2	 -‐	 No-‐log	

Descript ion:

Apple's Sandbox Guide v1.0

 36

Do not log denied operations. Applies only to deny action.

Syntax:

(with no-log)

Example(s):

§ (deny file-read* (subpath “/tmp”) (with no-log))

5.4.3	 -‐	 No-‐sandbox	

Description:

Applies only to allow action and process-exec operation.

Syntax:

(with no-sandbox)

Example(s):

????

5.5	 -‐	 Other	 keywords	

5.5.1 - require-any and require-al l

These are the keywords for logical OR and logical AND.

Syntax:

(require-any (filter1) (filter2) …)

Example:

(deny file-read-data

 (require-all

 (file-mode #o0644)

 (subpath "/private")

 (literal "/private/tmp/test2"))

)

In this case, reading the contents of the file test2 located in /tmp will only be denied if it matches

all the three filters (the subpath filter is somewhat redundant in this case).

$ sandbox-exec -f ls2 cat /tmp/test2

cat: /tmp/test2: Operation not permitted

Log output:

Sep 3 23:27:44 macbox sandboxd[13401]: cat(13400) deny file-read-data /private/tmp/test2

$ chmod 0614 /tmp/test2

$ sandbox-exec -f ls2 cat /tmp/test2

aaaaaaaaaa

5.5.2 – trace

This command will assist you in building custom profiles for any app.

Syntax:

(trace output_file_name)

Example:

(trace “trace.sb”)

Apple's Sandbox Guide v1.0

 37

This will append rules to the file “trace.sb” (located at the working directory you are executing

sandbox-exec). These rules are for operations that would have been denied.

Then you can use the command sandbox-simplify to create a simplified sandbox profile based on

this trace file.

Note:

If you want to develop a custom profile from scratch using this feature, you could start with

something like this:

(version 1)

(debug all)

(import "bsd.sb")

(trace "trace.sb")

(deny default)

But this doesn’t work as expected. This will indeed generate a trace, but just for the initial

permissions. Let me explain this with an example. I started using the initial profile described

above:

$ sandbox-exec -f vienna2 arch -i386 /Applications/iTunes.app/Contents/MacOS/iTunes.orig

arch: /Applications/iTunes.app/Contents/MacOS/iTunes.orig isn't executable

$ more trace.sb

(version 1) ; Wed Sep 14 01:35:58 2011

(allow process-exec (literal "/usr/bin/arch"))

(allow process-exec (literal "/usr/bin/arch"))

(allow file-read-data (literal "/usr/bin"))

(allow file-read-data (literal "/usr/bin/arch"))

As you can observe, only the initial rules to start the arch process are “traced”. The next step is to

add these to the initial profile and continue tracing, in a iterative process.

You might feel it’s easier than checking the logs and manually adding stuff, but it’s still not an

automatic process.

6	 –	 Special	 hardcoded	 cases	

The following special cases can be found inside the code:

• Allow mach-bootstrap if mach-lookup is ever allowed.

• Allow access to webdavfs_agent if file-read* is always allowed.

• Never allow a sandboxed process to open a launchd socket.c

7	 –	 A	 sample	 sandbox	 profile	

This is a working sandbox for Vienna 2.5.x version. It’s still far from perfect but it works for normal

usage from what I could test. It is much more granular from other profiles I could find. The

consequence is a bigger and slightly more confuse profile. It’s not an easy task to build manually a

Apple's Sandbox Guide v1.0

 38

very tight sandbox. It requires a lot of testing and patience! The trace directive is very helpful to

assist in this process (not used to build this profile).

You will need to replace the string %username% with yours. A global search and replace does the

job.

------------ START HERE ------------

;

; Vienna 2.5.x Sandbox profile

; (c) fG!, 2011

; reverser@put.as

; v0.1 - 13/09/2011

;

; Note: replace %username% with your username

;

(version 1)

; well this doesn't seem to work...

(debug all)

;(trace "trace.sb")

; stuff we allow to execute

(allow process-exec (literal "/Applications/Vienna.app/Contents/MacOS/Vienna"))

; no need for forks? great :-)

;(allow process-fork)

; it needs to read some sysctl variables

(allow sysctl-read)

; where?

(allow sysctl-write)

; ----------------

; READ PERMISSIONS

; ----------------

; allow read system libraries and frameworks (from bsd.sb)

(allow file-read-data file-read-metadata

 (regex

 #"^/usr/lib/.*\.dylib$"

 #"^/usr/lib/info/.*\.so$"

 #"^/private/var/db/dyld/"

 #"^/System/Library/Frameworks/*"

 #"^/System/Library/PrivateFrameworks/*"

 #"^/System/Library/*"

)

)

; Vienna Frameworks

Apple's Sandbox Guide v1.0

 39

(allow file-read*

 (regex

 ; Vienna itself

 #"^/Applications/Vienna.app/*"

 ; Growl

 #"^/Library/PreferencePanes/Growl.prefPane/*"

)

)

; allow read to required system stuff

(allow file-read*

 (regex

 #"^/usr/share/zoneinfo/*"

 #"^/dev/*"

 #"^/usr/share/icu/*"

)

 (regex

 #"^/private/var/folders/*"

 ; do we really need access to keychains ?

 #"^/Users/%username%/Library/Keychains/*"

 #"^/Library/Fonts/*"

 #"^/Users/%username%/Library/Caches/*"

 #"^/Users/%username%/Library/InputManagers/*"

 ; what's this ???

 #"^/private/var/db/mds/system/*"

)

 (literal "/private/etc/localtime")

 (literal "/Users/%username%/Library/Preferences/com.apple.security.plist")

 (literal "/private/var/db/mds/messages/se_SecurityMessages")

 (literal "/Users/%username%/Library/Preferences/com.apple.systemuiserver.plist")

 (literal "/Users/%username%/Library/Cookies/Cookies.plist")

 (literal "/Users/%username%/Library/Preferences/com.apple.LaunchServices.plist")

 (literal "/Users/%username%/Library/Preferences/pbs.plist")

)

(allow file-read-metadata

 (literal "/")

 (literal "/var")

 (literal "/Applications")

 (literal "/etc")

 (literal "/Users")

 (literal "/Users/%username%")

Apple's Sandbox Guide v1.0

 40

 (literal "/System")

 (literal "/Users/%username%/Library/Preferences")

 (literal "/Library")

 (literal "/Users/%username%/Library")

 (literal "/Library/PreferencePanes")

 (regex

 #"^/Users/%username%/Library/Autosave Information/*"

)

)

; allow read application data

(allow file-read*

 (regex

 #"^/Users/%username%/Library/Application Support/Vienna/*"

)

)

; allow read to preferences files

(allow file-read-data file-read-metadata

 (regex #"^/Users/%username%/Library/Preferences/ByHost/.GlobalPreferences.*")

 (literal "/Users/%username%/Library/Preferences/.GlobalPreferences.plist")

 (literal "/Users/%username%/Library/Preferences/uk.co.opencommunity.vienna2.plist")

 (literal "/Library/Preferences/.GlobalPreferences.plist")

)

; web browsing related

(allow file-read*

 (regex

 #"^/Users/%username%/Library/Icons/*"

 #"^/Users/%username%/Library/Internet Plug-Ins/*"

 #"^/Library/Internet Plug-Ins/*"

)

 ; still missing some? well we could even remove quicktime and java :-)

 (literal "/Users/%username%/Library/Preferences/com.github.rentzsch.clicktoflash.plist")

 (literal "/Users/%username%/Library/Preferences/com.apple.java.JavaPreferences.plist")

 (literal

"/Users/%username%/Library/Preferences/com.apple.quicktime.plugin.preferences.plist")

)

; -----------------

; WRITE PERMISSIONS

; -----------------

Apple's Sandbox Guide v1.0

 41

; allow write to dtrace related stuff

(allow file-write* file-ioctl

 (regex

 #"^/dev/dtracehelper$"

)

)

(allow file-write*

 (regex

 #"^/Users/%username%/Library/Application Support/Vienna/*"

 #"^/Users/%username%/Library/Caches/*"

 #"/Users/Shared/SC Info"

 #"^/Users/%username%/Library/Cookies/*"

 #"^/private/var/tmp/tmp.*"

 #"^/private/var/folders/*"

 #"^/Users/%username%/Library/Preferences/uk.co.opencommunity.vienna2.plist*"

)

)

; web browsing related

(allow file-write-data

 (literal "/Users/%username%/Library/Icons/WebpageIcons.db")

)

(allow file-write*

 (literal "/Users/%username%/Library/Icons/WebpageIcons.db-journal")

)

; ----------------

; MACH PERMISSIONS

; ----------------

(allow mach-lookup

 (global-name #"^com.apple.bsd.dirhelper")

 (global-name "com.apple.system.logger")

 (global-name "com.apple.system.notification_center")

 (global-name "com.apple.CoreServices.coreservicesd")

 (global-name "com.apple.SecurityServer")

 (global-name "com.apple.dock.server")

 (global-name "com.apple.distributed_notifications.2")

Apple's Sandbox Guide v1.0

 42

 (global-name "com.apple.audio.coreaudiod")

 (global-name "com.apple.audio.systemsoundserver")

 (global-name "com.apple.metadata.mds")

 (global-name "com.apple.ocspd")

 (global-name "com.apple.SystemConfiguration.PPPController")

 (global-name "en (Apple)_OpenStep")

 (global-name "com.apple.system.DirectoryService.libinfo_v1")

 (global-name "com.apple.system.DirectoryService.membership_v1")

 (global-name "com.apple.windowserver.session")

 (global-name "com.apple.windowserver.active")

 (global-name "com.apple.FontServer")

 (global-name "com.apple.pasteboard.1")

 (global-name "com.apple.tsm.uiserver")

 (global-name "com.apple.SystemConfiguration.configd")

 (global-name "com.apple.VoiceOver.running")

 (global-name "com.apple.FontObjectsServer")

 (global-name "com.apple.FSEvents")

 (global-name "com.apple.cvmsServ")

 (global-name "GrowlApplicationBridgePathway")

)

; ------------------------------

; MEMORY AND NETWORK PERMISSIONS

; ------------------------------

;

(allow ipc-posix-shm)

; network related stuff

; add other ports if needed

(allow network-outbound

 (remote tcp "*:80")

 (remote tcp "*:443")

 (remote unix-socket (path-literal "/private/var/run/mDNSResponder"))

)

;

(allow system-socket)

; deny everything else :-)

(deny default)

------------ END HERE ------------

Apple's Sandbox Guide v1.0

 43

8	 –	 Where	 to	 find	 more	 information	

These are some links and books where you can find further information about this technology. The

Enterprise Mac Security book has a chapter dedicated to just this.

Books:

§ Enterprise Mac Security: Mac OS X Snow Leopard, By Charles Edge, William Barker, Beau

Hunter, Gene Sullivan

§ The Mac Hackers Handbook, by Charlie Miller, Dino Dai Zovi

Websites:

http://www.sedarwin.org/

http://www.romab.com/ironsuite/SBPL.html

http://www.tomsick.net/projects/sandboxed-safari

http://tengrid.com/wiki1/index.php?title=Sandbox

Chromium/Chrome sources

Appendix	 A	

All available operations (you can use this info with the IDC script presented in the next appendix):

------------ START HERE ------------

default

file*

file-chroot

file-ioctl

file-read*

file-read-data

file-read-metadata

file-read-xattr

file-revoke

file-write*

file-write-data

file-write-flags

file-write-mode

file-write-mount

file-write-owner

file-write-setugid

file-write-times

file-write-unmount

file-write-xattr

ipc*

ipc-posix*

ipc-posix-sem

ipc-posix-shm

Apple's Sandbox Guide v1.0

 44

ipc-sysv*

ipc-sysv-msg

ipc-sysv-sem

ipc-sysv-shm

mach*

mach-bootstrap

mach-lookup

mach-priv*

mach-priv-host-port

mach-priv-task-port

mach-task-name

network*

network-inbound

network-bind

network-outbound

process*

process-exec

process-fork

signal

sysctl*

sysctl-read

sysctl-write

system*

system-acct

system-audit

system-fsctl

system-lcid

system-mac-label

system-nfssvc

system-reboot

system-set-time

system-socket

system-swap

system-write-bootstrap

job-creation

mach-per-user-lookup

------------ END HERE ------------

Appendix	 B	

The IDC script I used to find the correspondence between SBPL operations and sandbox kernel

module MAC framework hooks (in sandbox kernel module/extension). It’s a quick hack but it gets

Apple's Sandbox Guide v1.0

 45

the required information (although with some dupes and not relevant information). Output is

dumped to IDA console (you can modify to write to a file, if you wish).

This code is a bit lazy because I used only the IDC command console, which doesn’t support

functions. It’s not so important that deserves better code J

------------ START HERE ------------

#include <idc.idc>

auto ea, crap;

auto file, fd, first, register1, register2;

auto myarray, myarrayid, myindex, operation,kr;

// ask where the file with operations names is

// the file we load contains all operations names, check Appendix A

file = AskFile(0, "*.*", "Load the file with all operations names:");

// load the array with the operations names

myarray = CreateArray("operationsnames");

// if it doesn't exist, then load information

if (myarray != -1)

{

 Message("Array doesn't exist; loading data...\n");

 myarrayid = GetArrayId("operationsnames");

 myindex = 0;

 fd = fopen(file, "r");

 if (fd == 0)

 {

 Message("File open error!\n");

 }

 // read the contents into the array

 while ((operation = readstr(fd))>0)

 {

// Message("Operation %s", operation);

 kr = SetArrayString(myarrayid, myindex, operation);

 myindex++;

 }

}

// TAKE CARE OF CRED_CHECK

//first = 0x253E;

first = LocByName("_cred_check");

// get the first location that calls for _cred_check

ea = RfirstB(first);

// get the address before the call so we can verify the parameter being passed

Apple's Sandbox Guide v1.0

 46

// which is the information we are looking for

crap = FindCode(ea, SEARCH_UP | SEARCH_CASE | SEARCH_NEXT);

// get an array id so we can work with the array

myarrayid = GetArrayId("operationsnames");

// start searching for the stuff we want

while (ea != BADADDR)

{

 // retrieve the register

 register1 = GetOpnd(crap, 0);

 // verify if it's edx, the operation we want is mov edx, #VALUE

 while (register1 != "edx")

 {

 // try to find the right operation... not exactly the best algorithm heehhe

 crap = FindCode(crap, SEARCH_UP | SEARCH_CASE | SEARCH_NEXT);

 register1 = GetOpnd(crap, 0);

 }

 // retrieve the value

 register2 = GetOpnd(crap,1);

 // output the values we want, we are not writing anything to a file, just to screen

 // we can copy & paste later (or you can modify script to write to a new file)

 Message("%s;%s", GetFunctionName(ea), GetArrayElement(AR_STR, myarrayid,

xtol(register2)));

 // iterate to the next call...

 ea = RnextB(first, ea);

 crap = FindCode(ea, SEARCH_UP | SEARCH_CASE | SEARCH_NEXT);

}

// CRED_CHECK_SOCKET

//first = 0x2596;

first = LocByName("_cred_check_socket");

ea = RfirstB(first);

crap = FindCode(ea, SEARCH_UP | SEARCH_CASE | SEARCH_NEXT);

while (ea != BADADDR)

{

 register1 = GetOpnd(crap, 0);

 while (register1 != "edx")

 {

 crap = FindCode(crap, SEARCH_UP | SEARCH_CASE | SEARCH_NEXT);

 register1 = GetOpnd(crap, 0);

 }

 register2 = GetOpnd(crap,1);

Apple's Sandbox Guide v1.0

 47

 Message("%s;%s", GetFunctionName(ea), GetArrayElement(AR_STR, myarrayid,

xtol(register2)));

 ea = RnextB(first, ea);

 crap = FindCode(ea, SEARCH_UP | SEARCH_CASE | SEARCH_NEXT);

}

// CRED_CHECK_VNODE

//first = 0x24D2;

first = LocByName("_cred_check_vnode");

ea = RfirstB(first);

crap = FindCode(ea, SEARCH_UP | SEARCH_CASE | SEARCH_NEXT);

while (ea != BADADDR)

{

 register1 = GetOpnd(crap, 0);

 while (register1 != "edx")

 {

 crap = FindCode(crap, SEARCH_UP | SEARCH_CASE | SEARCH_NEXT);

 register1 = GetOpnd(crap, 0);

 }

 register2 = GetOpnd(crap,1);

 Message("%s;%s", GetFunctionName(ea), GetArrayElement(AR_STR, myarrayid,

xtol(register2)));

 ea = RnextB(first, ea);

 crap = FindCode(ea, SEARCH_UP | SEARCH_CASE | SEARCH_NEXT);

}

// sb_evaluate

//first = 0x34DC;

first = LocByName("_sb_evaluate");

ea = RfirstB(first);

crap = FindCode(ea, SEARCH_UP | SEARCH_CASE | SEARCH_NEXT);

while (ea != BADADDR)

{

 register1 = GetOpnd(crap, 0);

 while (register1 != "dword ptr [esp+4]")

 {

 crap = FindCode(crap, SEARCH_UP | SEARCH_CASE | SEARCH_NEXT);

 register1 = GetOpnd(crap, 0);

 }

 register2 = GetOpnd(crap,1);

 Message("%s;%s", GetFunctionName(ea), GetArrayElement(AR_STR, myarrayid,

xtol(register2)));

Apple's Sandbox Guide v1.0

 48

 ea = RnextB(first, ea);

 crap = FindCode(ea, SEARCH_UP | SEARCH_CASE | SEARCH_NEXT);

}

------------ END HERE ------------

